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a b s t r a c t 

The COVID-19 outbreak is in its growing stage due to the lack of standard diagnosis for 

the patients. In recent times, various models with machine learning have been developed 

to predict and diagnose novel coronavirus. However, the existing models fail to take an 

instant decision for detecting the COVID-19 patient immediately and cannot handle multi- 

ple medical sensor data for disease prediction. To handle such challenges, we propose an 

intelligent health monitoring and prediction framework, namely the iCovidCare model for 

predicting the health status of COVID-19 patients using the ensemble Random Forest (eRF) 

technique in edge networks. In the proposed framework, a rule-based policy is designed on 

the local edge devices to detect the risk factor of a patient immediately using monitoring 

Temperature sensor values. The real-time health monitoring parameters of different medi- 

cal sensors are transmitted to the centralized cloud servers for future health prediction of 

the patients. The standard eRF technique is used to predict the health status of the patients 

using the proposed data fusion and feature selection strategy by selecting the most signif- 

icant features for disease prediction. The proposed iCovidCare model is evaluated with a 

synthetic COVID-19 dataset and compared with the standard classification models based on 

various performance matrices to show its effectiveness. The proposed model has achieved 

95.13% accuracy, which is higher than the standard classification models. 

© 2021 Elsevier B.V. All rights reserved. 

 

 

 

1. Introduction 

The recent spread of the COVID-19 disease simply referred to as coronavirus pandemic, is an ongoing pandemic world- 

wide, causes by Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV2) 1 [1] . The outbreak of the COVID-19 pandemic 

was initiated in Wuhan, China in December 2019. 2 According to the World Health Organization (WHO), the coronavirus most 

likely spreads from animal origin and is a negatively stranded RNA virus, which causes severe acute respiratory syndrome 

from common colds [2] . More importantly, the coronavirus disease can run its courses without any symptoms of illness on

a patient body, however, the infection can include severe pneumonia and in the worst case, the patient can die. This virus

swarms the lungs of the patients after a few days of throat infection and can have devastating effects and manifesting fever,
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cough, and severe headache [3,4] . In the case of young people, infected with coronavirus disease, the illness runs its course

without any complications and the patient gets well soon. However, this virus affects mostly elderly people and people with 

chronic diseases [5,6] . The main mode of transmission of the coronavirus is droplet mode and the virus spreads mainly

through the close contact person, especially through coughing. 3 As of 7th August 2020, more than 18.9 million cases have

been reported of COVID-19 in more than 200 countries and territories, where more than 712,0 0 0 deaths occurred and more

than 11.4 million people have recovered. 4 Therefore, immediate and accurate prediction of the coronavirus disease in its 

early stage is very important to effectively treat the patient before spreading the virus on the patient body. 

The coronavirus disease can be identified by using wearable sensors (such as temperature sensor) or conducting medical 

tests in the hospital. However, in most cases, extracting valuable risk factors of coronavirus disease through temperature 

sensor data with some API (Application Programming Interface) or electronic medical tests is difficult. Nowadays, to detect 

coronavirus disease, wearable body sensor networks (WBSN) are used to monitor the patient’s body at a regular time in- 

terval and externally through various medical sensors (MSs). However, the medical sensor data (MSD) for the coronavirus 

disease prediction is corrupted by a single artifact such as noise and missing value, which reduces the system performance 

and accuracy level of disease prediction. Thus, the first challenging task in WBSN is to utilize both previous medical records

(PMRs) of the patients and MSD together while monitoring COVID-19 patients. The second challenging task is to extract the 

meaningful and relevant features from the dataset for increasing the accuracy of disease prediction. Therefore, to identify 

the hidden syndromes of the COVID-19 patient and identify the presence of coronavirus inside the patient body, an intelli- 

gent framework is required for extracting the important features from both the MSD and PMRs with data fusion and feature

selection techniques and predicts the disease with a classification model. 

1.1. Motivation 

Due to the outbreak and increasing number of deaths of coronavirus disease, the prediction of COVID-19 disease is one 

of the challenging tasks in the health-care domain. Currently, several models have been developed to predict and analyze 

the coronavirus disease on centralized cloud servers with MSs data. Furthermore, the existing system models of coronavirus 

disease prediction are based on various data mining and machine learning approaches instead of using data fusion and fea- 

ture selection techniques. Thus, due to a lack of theoretical support, the existing approaches fail to increase the accuracy 

of disease prediction while minimizing the mean square error. Besides that, the collected dataset on coronavirus disease 

through MSs contains relevant features along with many irrelevant and redundant features. Such features can increase the 

noise level and create confusion while preparing the final dataset before applying the classification model for disease pre- 

diction. As a result, handing such a dataset with irrelevant features can reduce the prediction accuracy while increasing the 

run-time of data classification and prediction. Therefore, it is necessary to remove the unnecessary features and prepare 

an updated dataset before applying the standard classification model for disease prediction. Moreover, another important 

research aspect of COVID-19 is to take an instant decision for the emergency patient. Motivated by the above-mentioned 

challenges, we develop an intelligent health prediction model using a feature selection technique and ensemble Random 

Forest (eRF) classification model for increasing the accuracy of the coronavirus disease prediction in edge networks. 

1.2. Contributions 

In this paper, a novel intelligent health monitoring and prediction model, namely the iCovidCare model is designed for 

coronavirus disease prediction using the feature selection technique and eRF classification model. Initially, the data of a 

patient is collected efficiently based on two different modes, namely MSD and PMRs. Next, an instant decision-making ap- 

proach is developed to take an immediate decision about the risk-factor of coronavirus disease using the temperature sensor 

data and age of the patient with a rule-based approach on the local edge devices. The detailed analysis of the coronavirus

disease prediction is evaluated on the centralized cloud servers with the MSD and PMRs of the patients. The data fusion

and feature selection strategy are used to combine the MSD and PMRs and generates rich healthcare data. Secondly, data 

integration and data preprocessing approaches are developed to reduce the number of features set with suitable feature 

weight for increasing the accuracy level of coronavirus disease prediction. Finally, an eRF classifier is used to train the pro-

posed iCovidCare model for coronavirus disease prediction. The major contributions of the proposed work are discussed as 

follows: 

• For COVID-19 disease prediction, an intelligent prediction model, namely the iCovidCare model is developed in edge 

networks using data fusion and feature selection strategies with the eRF classification model for COVID-19 disease pre- 

diction. 

• An instant decision-making strategy is developed to diagnose coronavirus disease on a patient body at local edge devices 

with minimum delay using the temperature sensor data using a rule-based approach. 
3 https://www.terviseamet.ee/en/what- covid- 19 
4 https://covid19.who.int/ 
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• A Data fusion technique is applied to combine both the MSD and the PMRs for COVID-19 disease prediction. Moreover, 

different data preprocessing techniques along with the proposed feature selection strategy are used for noise reduction 

and decrease the dimensionality and complexity of the dataset. 

• The eRF classification model is used to train the iCovidCare model for coronavirus disease prediction and analysis the 

risk factor of the COVID-19 patients. 

• An extensive empirical study has been conducted to evaluate the effectiveness of the proposed iCovidCare model. The 

proposed model enhances the performance by achieving higher accuracy of 95.13% as compared to the standard classifi- 

cation models. 

1.3. Paper organization 

The rest of the paper is structured as follows: Section 2 discusses a brief review of the coronavirus disease prediction

models and importance of RF classification model. Section 3 introduces the proposed iCovidCare model in edge networks 

followed by the proposed methodologies for COVID-19 disease predictions. The empirical evaluations of the proposed model 

have been discussed in Section 4 . Finally, the conclusion and future research scopes are discussed in Section 5 . 

2. Related work 

Nowadays, one of the critical tasks in the healthcare domain is to predict the various risk levels of COVID-19 affected

patients based on their MSD and PMRs. More importantly, extracting the useful features from these raw data, and then fuse

those data to prepare a structured dataset for further prediction, is a challenging task. Besides that, the selection of highly

critical features from the fused data for enhancing accuracy with a standard classification model on disease prediction is 

another challenging task. Therefore, in this section, we discuss the existing disease diagnostic models based on WBSN, data 

and feature-level fusion techniques, and various standard classification models for disease prediction. 

WBSN plays a critical role in monitoring vital signs of the patients in a regular time interval to improve the COVID-

19 disease prediction [7,8] . Also, the data fusion techniques are highly used to integrate the raw sensor data from several

monitoring devices and produce data in a more consistent, accurate, and useful form [9,10] . To address this issue, authors

in [11] used a variable ranking method to extract relevant features and predict the risk factors of cardiovascular diseases. 

Further, it can perform better over the stored data in a structured format by removing noisy and inaccurate data. However,

there would be many redundant variables in a given feature set. To overcome this issue, feature selection strategy [12] has

been introduced to select the most significant features for training the models that can significantly improve the accuracy. In 

[13] , the dependency between two stochastic variables and similar weights to all the selected features have been considered 

for a given dataset. To reduce the dimensionality of the dataset, a chi-square technique with Principle Component Analysis 

(PCA) has been introduced to enhance the prediction accuracy of the classification models [14] . Though this method selected

the most important features for identifying risk factors from the heart disease dataset, it does not support a dataset with a

small sample size. Further, it requires a larger dataset with different feature selection techniques. Hence, the assignment of 

unique weights and scores based on the sample size and the selected set of features is a primary challenging task before

training the machine learning models. 

Many researchers have developed various disease prediction models using different machine learning classification al- 

gorithms [15–17] . Several classification models including linear regression (LR), Support Vector Clustering (SVC), Decision 

Tree (DT), Random Forest (RF), and Gaussian Naive Bayes (GN) were analyzed and tested using various healthcare datasets 

for disease prediction [18–20] . Here, the prediction accuracy of all classification models varies due to the sample data size,

noisy data, missing values, and random selection of features for validation. Authors in [21] evaluated well-known classifiers 

at the initial level, then combined overall predictions to achieve better performance using gradient boosting classifier. How- 

ever, this classifier will increase the random feature sets due to the unfused dataset. The statistical and correlation methods 

along with machine learning algorithms in [22] showed better accuracy for predicting the COVID-19 disease severity and 

mortality rate using several clinical parameters. Moreover, supervised machine learning models for COVID-19 infected pa- 

tients have been developed in [23] , these learning algorithms validated using epidemiology labeled dataset to identify the 

positive and negative COVID-19 cases. Also, the correlation coefficient analysis technique has been incorporated to determine 

the various dependent and independent feature sets before developing the models. 

In recent times most of the existing works [24–27] have applied the RF classification model to achieve better accuracy 

over various healthcare datasets for disease prediction. The empirical evaluations of these algorithms have indicated that 

the RF classification model performs superior to the standard classification models. Moreover, these existing models re- 

vealed the unavailability of high-quality clinical datasets, lack of multi-model learning and external validation of vital signs 

from the healthcare professionals, and the absence of selecting the most critical feature sets. This will highly reduce the 

disease prediction accuracy since these clinical aspects need to be addressed for further refining the classification mod- 

els. By motivating the above-mentioned issues, in this paper, we proposed an intelligent model for COVID-19 disease risks 

prediction with a feature selection strategy and ensemble RF classification model. 
3 
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Fig. 1. Structure of proposed iCovidCare model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. iCovidCare model and disease prediction methodology 

In this section, the structure of the proposed iCovidCare model has been discussed in detail. Further, we highlight the 

instant decision policy at local edge devices followed by the disease prediction mechanism with multiple monitoring pa- 

rameters with proposed data fusion strategy and eRF technique. 

3.1. iCovidCare model 

The structure of the proposed iCovidCare model in edge networks is shown in Fig. 1 . The proposed model has two data

sources such as the wireless body sensor network (WBSN) and the PMRs of the patients (represented as M R 1 , M R 2 , . . . , M R k ).

The proposed model uses a set of MSs including Body Temperature (BT- MS 1 ), Oxygen Saturation (OS- MS 2 ), Blood Pressure

(BP- M S 3 ), Respiration Rate (RR- M S 4 ), and Heart Rate (HR- MS 5 ) of the patients to collect internal and external physiologi-

cal data for daily health monitoring and prediction, which are transmitted to the processing devices through a local edge 

device or gateway via WiFi (Task 1 in Fig. 1 ). Further, the iCovidCare model consists of two processing devices for instant

decision making and future disease prediction such as a set of local edge devices (represented as E = { E 1 , E 2 , . . . , E n } ) and a

centralized cloud data center (CDC) with a set of resource-rich cloud servers (represented as S = { S 1 , S 2 , . . . , S m 

} ) . The local

edge devices are used for taking an instant decision based on the temperature sensor data and age of the patient using a

rule-based policy (Task 2 in Fig. 1 ). 

After taking an instant decision of the patients, the local edge devices transfer the health monitoring data to the central-

ized CDC via Long-Term Evolution for further prediction. Initially, the MSD and the PMRs of the patients are securely stored

in a database of the CDC, namely Monitoring Data Storage (MDS) (Task 3 in Fig. 1 ). Further, the health prediction model of

the CDC starts to predict the coronavirus disease using MSD and the PMRs of the patients (Task 4 in Fig. 1 ). The health pre-

diction model consists of three main phases: 1) Data Fusion; 2) Data Preprocessing with feature selection; 3) Classification 

model for disease prediction. In the first phase, the features are extracted from both MSD and the PMRs using the proposed

fusion techniques (Task 5 in Fig. 1 ). Next, the fused data are preprocessed for removing the noise and missing-data filtering

using various data mining techniques (Task 5 in Fig. 1 ). Finally, the preprocessed data are passed through the RF classifier

for the final COVID-19 disease prediction of the patient (Task 6 in Fig. 1 ). Further, the analyzed data are stored in the MDS

of the CDC for future disease analysis and prediction (Task 7 in Fig. 1 ). 

3.2. Instant disease identification 

The initial solution of the proposed iCovidCare model is to take an instant decision of COVID-19 disease on a patient

body at the edge of the networks. The local edge devices of the proposed iCovidCare model consider two types of data for

COVID-19 disease identification: body temperature data, collected by a BT-MS1, and age of the patient, retrieved from the 

PMRs of the patient. In this model, we have considered that the age of the registered patients is stored on the resource-

constrained local edge devices, whereas the remaining PMRs of the patients are stored on the resource-rich cloud database 

(as shown in Fig. 1 ). 

In this strategy, automated detection and classification of the temperature sensor values from the patient body support 

early diagnosis of the COVID-19 disease along with the age of the patient and takes immediate action for his/her treatment,

especially the patients who have moderate or severe symptoms (as shown in Fig. 2 ). In this context, only the data from the

temperature medical sensor is observed and analyzed every ten minutes to determine the health condition of an individual 

patient. Subsequently, the if-then rule -based classification technique is applied to the observed temperature samples at the 

local edge device before transmitting to the centralized cloud server. This technique makes use of a set of rules for classifying
4 
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Fig. 2. Instant decision making for COVID-19 disease on edge devices. 

 

 

 

 

 

 

 

 

 

the observed samples ( i.e. patients temperature value 5 and age belong to severe, moderate, or normal) by assigning a specific

rank or condition to these rules. For disease classification, we define eight rules to detect the risk levels of COVID-19 patients,

which are defined as follows. 

Rule 1 : IF (BT ≤ 36 . 8)&&(AGE ≤ 100) , THEN Patient Condition is Normal. 

Rule 2 : IF (BT > 37)&&(AGE ≤ 10) , THEN Patient Condition is Severe. 

Rule 3 : IF (BT > 37 . 2&& BT ≤ 38)&&(AGE > 10&& AGE ≤ 30) , THEN Patient Condition is Moderate. 

Rule 4 : IF (BT > 38)&&(AGE > 10&& AGE ≤ 30) , THEN Patient Condition is Severe. 

Rule 5 : IF (BT > 36 . 9&& BT ≤ 37 . 5)&&(AGE > 30&& AGE ≤ 50) , THEN Patient Condition is Moderate. 

Rule 6 : IF (BT > 37 . 6)&&(AGE > 30&& AGE ≤ 50) , THEN Patient Condition is Severe. 

Rule 7 : IF (BT > 37 . 2)&&(AGE > 50) , THEN Patient Condition is Severe. 

Rule 8 : IF a patient does not belong to any of the above groups, his/her condition is Normal. 

With the help of the proposed rule-based classification policy, the hospital authority can easily take necessary action 

on the COVID-19 patients and ask them to isolate themselves or stay at home/hospital based on the aforesaid severity 

conditions. The proposed methodologies of the COVID-19 disease prediction on the centralized cloud servers are discussed 

in the following sections. 

3.3. Data fusion technique 

Data fusion is one of the most significant methods in real-time sensor data analysis. This process integrates the raw data

from multiple sources including MSD and PMRs of the patients to generate a more consistent, accurate, and useful dataset. 

In the data fusion level, both MSDs and PMRs are used to effectively filter the unnecessary data. To achieve this, initially,

various risk factors related to COVID-19 disease are extracted from the PMRs dataset. For example, the proposed data fusion 

strategy extracts the age and body temperature values along with other chronic disease parameters to identify the risk 

level of the patient. Besides that, it completely removes the medical records that contain no history of chronic diseases. 

Further, other raw data collected from the MSDs are fused, as described in Section 3.4 . Finally, the fused sensor data with

extracted risk factors from the PMRs dataset is merged and stored into comma-separated value in (.CSV) files for training 

the classification models. In this way, the training models use the best combination of the features for COVID-19 disease 

prediction 

3.4. Data preprocessing techniques 

Data preprocessing is one of the most important steps before applying classification models for disease identification. 

To improve the accuracy of the disease prediction, the inconsistent, incomplete, and noisy real-world data need to be pre- 

processed with some techniques including missing-data filtering, data integration, data normalization, and feature selection. 

Therefore, to increase the accuracy of the COVID-19 disease prediction, we have applied the above-mentioned four types of 

preprocessing techniques for preparing the noise-free dataset. 

3.4.1. Missing-data filtering 

The data received from the MSs from the patient body and data extracted from the PMRs of the patients contain some

incorrect and useless information. Sometimes while receiving the MSD through the gateways for COVID-19 disease predic- 

tion, the data may damage due to various signal artifacts including noise and missing values, which can reduce the disease

prediction accuracy. On the other hand, the PMRs of the patients may contain some missing values due to the failure of

the text mining techniques during recognizing FRF value. To overcome the above-mentioned issues of MSD and PMRs files 

and to prepare a noise-free dataset, we employ a simple Kalman filter method for removing noise, inconsistencies and re- 

move duplicate records [28] . Furthermore, two unsupervised filters, namely Remove Useless and Replace Missing Values are 

utilized in the initial stage of data filtering to remove useless information with a maximum 90% variance and replace the

missing values with the mean and median values with the existing data in a structured dataset using Eq. (1) [29] . 

X̄ 

CD j = 

∑ 

X 

CD j 
i (1) 
n 

5 https://ccforum.biomedcentral.com/track/pdf/10.1186/s13054- 020- 03045- 8 
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Here, X̄ CD j represents features, X = pid, age, gen, bt, osr,...,hr, rr, bp, C D j , C D j = [0 , 1] represents the category level. Both

n and i indicate the number of patterns and i th pattern of the feature X with respect to CD j , respectively. Further, X 
CD j 
i 

represents the mean value of feature X under category CD j . X̄ CD j replaces the missing values of feature X ( i.e. gen) within

category CD j . Moreover, the missing values in the PMRs are replaced by the current FRF attribute values in the structured

dataset. 

3.4.2. Data integration 

Data integration is another important step in preprocessing that merges the raw healthcare records from different sources 

to process and store them into a single database. Typically, the combined datasets may contain some redundant values that 

lead to poor quality of the data. In such a case, predicting the COVID-19 disease of a patient becomes very difficult due to

the redundancy and inconsistency in the attribute values. For resolving this issue, we introduce a correlation-based feature 

filtering (CFF) method to find the subset of the most relevant feature from the COVID-19 dataset for training the classification

models. This preprocessing technique uses an intelligent score ( IS i ) to pick the most significant feature for predicting the

dependent variable, which is defined as follows. 

IS i = 

lr ̄c f 

(l + l(l − 1) r ̄f f ) 
(2) 

Where l denotes the set of features. Both lr ̄c f and r ̄f f represent the average feature class correlation and average feature-

feature inter-correlation, respectively. 

3.4.3. Data normalization 

The combined COVID-19 dataset ( D o ) with MSD and PMRs of the patients contains several features with different numer-

ical values, which may increase the burden of the computation process of classification models for disease prediction. To 

reduce this burden, the data normalization process is applied to re-scale one or more attributes for normalizing the attribute 

values of the dataset in the range between [0, 1]. In the proposed iCovidCare model, we apply the well-known max-min

normalization technique. This technique helps to convert and rescale the numerical values of the COVID-19 dataset within 

the range of [0, 1] [30] . For an instant, in the COVID-19 dataset, one of the feature variables is age, whose values vary from

0100. Moreover, this process reduces the computation difficulties and numerical complexity of the classification models. The 

numerical data value ( D v ) of ( D o ) is changed into the normalized form ( D v norm 

) within the range of [0, 1] using the following

formulation. 

D v norm 

= 

(D o − D v min ) 

(D v max − D v min ) 
∗ [ N max − N min ] + N min (3) 

Where, D v norm 

indicates the normal data value. Both D v min and D v max represent the minimum and maximum data value, 

respectively. Then, N max and N min denote the range of the converted dataset, which assigns the values for N max = 1 and 

N min = 0 . 

3.5. Feature selection 

Patient health-care information including MSD and the PMRs contains several irrelevant features, which can degrade the 

performance of disease prediction. Thus, one of the important research challenges in the field of disease prediction is to 

extract meaningful information from the combined MSD and the PMRs dataset by removing irrelevant features. Therefore, 

for improving the prediction accuracy of the COVID-19 disease, feature selection is one of the most important steps that 

improve the clarity of the data and reduces the training time. In the proposed iCovidCare model, we apply the Information

Gain (IG) approach for removing the noise and selecting the important features from the COVID-19 dataset for further 

classification. The IG approach helps to find the difference between prior and post entropy between two distinct variable Y
and Z, which is defined as follows. 

IG (Y|Z) = H(Y) − H(Y|Z) (4) 

Here, Y and Z represent the discrete random variables. The prior entropy of feature Y is calculated as follows. 

H(Y) = −
∑ 

i 

P (Y i ) log 2 P(Z i ) (5) 

Where P(Y i ) presents the prior probability for Y i . Then, the conditional entropy of Y after applying post entropy of Z is

calculated based on the following Equation. 

H(Y|Z) = 

{ −∑ 

i 

P(Y j ) H(Y|Z i ) 

−∑ 

i 

P(Y j ) 
∑ 

i 

(P(Y i |Z j ) log 2 P(Y i |Z j )) 
(6) 
6 
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Fig. 3. Illustration of Feature Selection strategy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the IG is measured by substituting Eqs. (5) and (6) (alternatively, put the values of Eqs. (5) and (6) into Eq. (4) ),

which is defined as follows. 

IG (Y|Z) = −
∑ 

i 

P(Y i ) log 2 P(Y i ) − (−
∑ 

i 

P(Y j ) 
∑ 

i 

(P(Y i |Z j ) log 2 P(Y i |Z j ))) (7) 

The iCovidCare model estimates the important features from the COVID-19 dataset for disease prediction using Eq. (7) by 

measuring the IG for each feature. Thus, the IG approach helps to estimate the important features of the dataset for improv-

ing the accuracy of COVID-19 disease prediction with a minimum number of features. Further, a feature weight approach is 

used over the selected features for assigning a weight to each feature and removing the irrelevant and redundant features 

from the training COVID-19 dataset [31] . In this paper, the proposed iCovidCare model uses a probabilistic approach for 

assigning a feature weight on each class for task prediction. This approach helps to improve the prediction accuracy of the

training dataset and performance of the proposed model with the standard classification models. In the proposed probabilis- 

tic approach of the feature weight, each feature shares a different weight. Let us consider that F = F 1 , F 2 , F 3 , . . . , F k repre-

sents the k features variables of a class. Further, P v is an instance that can signify the feature vector < u 1 , u 2 , u 3 , . . . , u k >,

where u k represents the weight of the feature F k . The feature weight of the specific instance is defined based on the fol-

lowing Equation. 

W k,u k 
= −

∑ 

k 

P (A| u k ) log 
P (A| u k ) 

P (A ) 
(8) 

Here, W k,u k 
∈ R 

+ and A represent the particular weight of feature value u k of the class A and the class variable, respec-

tively. The values of W k,u k 
lies within the range of [0, 1] and is related to the feature value of u k of the class A . The main

goal of the feature weight approach is to prepare the COVID-19 dataset into a more manageable form to improve the pre-

diction accuracy of the COVID-19 disease using the eRF classification model. The proposed methodology is illustrated using 

Fig. 3 . 

3.6. RF classification model for disease prediction 

In this section, we discuss the COVID-19 disease prediction using the eRF classification model over the COVID-19 dataset 

with the selected set of features. The eRF model is a powerful multi-way classifier algorithm for disease prediction and an

ensemble of different trees. Also, it consists of multiple trees (also known as a decision tree) and combines the predicted

values obtained from the trees. This policy helps to make the eRF model is a powerful one for prediction. These trees

of the RF model contain two different stages including ensemble learning and feature selection. Firstly, samples from the 

training dataset are randomly selected, which ensures that each tree predicts some values using a set of rules. Secondly, the

algorithm combines the predicted values from all trees to find the best split. The eRF model has several advantages over

other the standard classification models such as (a) eRF model performs well for both categorical and continuous variables, 

(b) eRF model handles the missing values and noise data for higher accuracy, (c) eRF model reduces the overfitting problem

in decision trees and reduces the variance of the dataset while prediction. Besides that, a higher number of trees of the eRF

model always helps to provide the high accuracy of disease prediction. 

The proposed methodology of the eRF classification model for COVID-19 disease prediction is shown in Fig. 4 . Initially,

the eRF model trains the model based on the selected set of features from COVID-19 dataset (using IG approach for feature

selection, as discussed in Section 3.5 ). Further, the iCovidCare model predicts the COVID-19 disease based on the real-time 
7 
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Fig. 4. Illustration of COVID-19 disease prediction using Classification Models. 

 

 

 

 

 

 

 

 

 

 

MSD and PMRs of the patients, as shown in Fig. 4 . Let us consider that M = { M 1 , M 2 , . . . , M n } and N = { N 1 , N 2 , . . . , N n }
represent the set of random variables and the set of responses, respectively. A function F (m ) = E [ N |M = m ] helps to predict

the response N for the random variable M . The records of the dataset ( D o = { (M 1 , N 1 ) , (M 2 , N 2 ) , . . . , (M n , N n ) } ) of [0 , 1] d ×
R + works as an independent pairs in the form of (M , N ) with E [ N 

2 ] < ∞ . For COVID-19 disease prediction, we use infinite

RF for the D o dataset. For collecting t numbers of random trees, the predicted value for the jth tree in the collection at m is

F n (m, δk ) , where (δ1 , δ2 , . . . , δk ) represent the random variables of D o dataset. A unified finite forest is derived by aggregating

the results of individual trees of the eRF, which is derived as follows. 

F k,n (m, δ1 , δ2 , . . . , δk ) = 

1 

K 

K ∑ 

i =1 

F n (m, δi ) (9) 

The pseudo code of the eRF classification model is shown in Algorithm 1 . 

Algorithm 1: eRF classification model. 

INPUT : A training Set S = { (M 1 , N 1 ) , (M 2 , N 2 ) , . . . , (M n , N n ) } ; Features: F , number of trees in the forest: n 

OUTPUT : prediction of eRF at m 

begin 

1 eRANDOM FOREST (S, F ) 2 P ← ∅ for i ← 1 to n do 

3 S (i ) ← A bootstrap sample from S 4 p i ← RANDOMIZED TREE LEARN (S (i ) , F ) 5 P ← (P ∪ p i ) 
end 

6 Return P7 End Function 8 RANDOMIZED TREE LEARN (S, F ) 9 At each node of the tree: 10 f ← very small subset of F11 Split of best features in f12 Return the 

learned tree 13 End Function 

end 

4. Empirical evaluation and analysis 

In this section, we discuss the system-level analysis of the proposed iCovidCare model with different classification algo- 

rithms for COVID-19 disease prediction using synthetic structure datasets. One of the essential tasks to determine the per- 

formance accuracy of the model is to identify an accurate classifier with higher prediction accuracy over synthetic datasets 

before and after the data fusion technique. Moreover, it is very hard to predict the optimal set of features that would be the

most suitable for COVID-19 risk assessments. Based on these insights, the most significant features from the datasets are 

applied to train the model after performing data fusion, preprocessing, feature extraction, and feature selection techniques 

as discussed in Section 3 . As a result, to show the prominence of the proposed iCovidCare model, several standard classifi-

cation algorithms including Linear Regression (LR), Support Vector Clustering (SVC), Decision Tree (DT), ensemble Random 

Forest (eRF), and Gaussian Naive Bayes (GN) are considered and evaluated based on the different validation metrics. The 

empirical results show that the RF technique performs better than the other standard classification techniques for COVID-19 

disease prediction with 95.13% accuracy. 

4.1. Experimental dataset 

The performance of the proposed model is tested with a synthetic COVID-19 dataset, which is created based on the real-

time clinical data of 100 patients. The ranges of vital signs and other chronic symptoms of patients [32–34] were collected

and validated under the guidance of a medical expert from the government Stanley Medical College (SMC) 6 , Chennai. To

prepare a synthetic dataset for validating the proposed model, the individual vital signs are injected into a Scikit-learn tool 
6 http://www.stanleymedicalcollege.ac.in/stanleymedicalcollege/ 

8 

http://www.stanleymedicalcollege.ac.in/stanleymedicalcollege/


M. Adhikari and A. Munusamy Internet of Things 14 (2021) 100385 

Table 1 

Feature descriptions and their properties of the COVID-19 datasets. 

Medical Sensors Data (MSD) 

Feature Label Feature Name Description Data Range Data Type 

F1 Body Temperature (BT) Body temperature of the patient in Celsius (36.4 = normal; 

(36.6–37.5)-moderate; ( ≥ 38) = sever) 

36–40 F Numeric 

F2 Oxygen Saturation Rate (OSR) Level of blood oxygen saturation in mm Hg (from 95 to 100 = normal; 

80-95-critical; 65–80 = emergency) 

65–100% Numeric 

F3 Respiration Rate (RR) The respiration rate of patient in bpm ((from 8 to 25 = normal; 26–35 

= critical; > 35 = emergency) 

8–40 Breaths 

per Minute 

Numeric 

F4 Heart Rate (HR) Variability of heart rate ranges in bpm (from 50 to 110 = normal; 

111–130 = critical; > 130 = emergency) 

50–140 Beats 

per Minute 

Numeric 

F5 Blood Pressure (BP) Systolic pressure of circulating blood is measured in mmHg (less 

than 120 = normal; 120–130 = critical; 130–180 = emergency) 

60–160 mmHG Numeric 

Previous Medical Records (PMRs) 

Feature Label Feature Name Description (0 represents absent and 1 represents present) Data Range Data Type 

F6 Patient ID (PID) Identity number of a patient 1–2000 Numeric 

F7 Gender (GEN) Gender of the patient (1 = male; 0 = female) 0, 1 Binary 

F8 Age (AGE) Age of a patient 5–90 Numeric 

F9 Heart Diseases (HD) Heart disease history of the patient 0, 1 Binary 

F10 Asthma (AST) History of asthma 0, 1 Binary 

F11 Sugar (SUG) The chronic blood sugar level of patient 0, 1 Binary 

F12 Bronchitis (BRO) Past symptoms of acute bronchitis 0, 1 Binary 

F13 Chronic Kidney Disease (CKD) Medical history of chronic kidney disease affected patient 0, 1 Binary 

F14 Lung Cancer (LC) Past archives of lung cancer affected patient 0, 1 Binary 

F15 Pneumonia (PNE) Historical symptoms of pneumonia 0, 1 Binary 

F16 Pregnant Women (PW) Pregnancy status of the patient 0, 1 Binary 

F17 Emphysema (EMP) Medical records of emphysema affected patient 0, 1 Binary 

F18 Taste and Smell Disorders (TSD) Old report of a patient who has taste and smell disorder 0, 1 Binary 

F19 Viral Infection in Tonsils (VIT) Historical record of viral infection of patient 0, 1 Binary 

F20 Neurological Disorders (ND) Historical record of neurological disorder patient 0, 1 Binary 

 

 

 

 

 

 

 

to generate a large dataset for COVID-19 disease risks prediction. This dataset consists of two types of data including MSD

that contains 20 0 0 samples with five features, PMRs which contains 20 0 0 samples with fifteen features and also labeled

with a number, i.e. 1 (present) or 0 (absent) to indicate the disease status of the patients. Finally, the numerical dataset is

evaluated with standard classification models in two different ways: (1) before applying data fusion and feature selection 

techniques, (2) after applying data fusion and feature selection techniques. The feature descriptions and properties of the 

COVID-19 synthetic dataset is shown in Table 1 . 

4.2. Validation metrics 

This section presents different validation metrics, which are used for evaluating the classification models. Different val- 

idation metrics including accuracy, precision, recall, mean absolute error (MAE), and root mean square error (RMSE) are 

considered to find out the effectiveness of the standard classification techniques for COVID-19 disease prediction. Likewise, 

the accuracy of all the models is computed concerning the train and test dataset. 

Accuracy: Accuracy (α) is an intuitive metric, primarily used to evaluate the prediction ability of the classification mod- 

els. It is measured as the ratio of the number of correct predictions (C ρ ) to the total number of predictions made for a given

dataset (T n ) , as shown in Eq. (10) . 

α = 

(C ρ ) 

(T n ) 
(10) 

Also, the accuracy of the classification models is evaluated based on the true negative (TN) and true positive (TP), which

can predict the presence or absence of COVID-19 disease. Further, the false negative (FN) and false positive (FP) are used to

identify the false predictions generated by the classification models. Thus, the newly derived accuracy formulation with TP, 

TN, FP, and FN is defined as follows. 

α = 

(T p + T n ) 

T p + T n + F p + F n 
(11) 

Where T p , T n , F p and F n denote the number of TP, TN, FP, and FN, respectively. 

Precision: Precision (ρ) is defined as the ratio of the correctly predicted TP observations (T p ) to the total predicted

positive (TPP) observations (T t p ) . The formula of ρ can be expressed as follows. 

ρ = 

T p 

T t p 
(12) 
9 
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Fig. 5. Success Ratio of Instant Disease making at edge devices. 

 

 

 

 

 

 

 

 

 

 

 

Where TPP observation is defined as T t p = (T p + F p ) ( F p represents the number of FP). 

Recall: Recall (R ) is defined as the ratio of true positive (TP) observations (T p ) to all the observations in actual class

(AAP) (T ap ) . It can be mathematically expressed as follows. 

R = 

T p 

T ap 
(13) 

Where AAP observation is defined as T ap = (T p + F n ) ( F n represents the number of FN). 

Mean Absolute Error (MAE): The MAE parameter (M a ) is represented as an error metric in the model evaluation process,

which is defined as the average value of all the absolute errors. Absolute error (| y i | ) is represented as the difference between

all the actual values (y i ) and predicted values ( ̂  y i ) . It is obtained by dividing the sum of all the absolute errors by the number

of observations (N) . The MAE metric is defined as follows. 

M 
 = 

1 

N 

N ∑ 

j=1 

| y i − ˆ y i | (14) 

Root Mean Squared Error (RMSE): The RMSE parameter (γm 

) is represented as the square root of the mean squared error

values. It measures the differences between the actual values (y i ) and the predicted values ( ̂  y i ) , by dividing the number of

observations (N) . The RMSE metric is defined as follows. 

γm 

= 

√ √ √ √ 

1 

N 

N ∑ 

j=1 

(y i − ˆ y i ) 2 (15) 

4.3. Validation results of instant decision making 

Due to the lack of instant risk prediction models and detailed analysis on COVID-19 disease, the proposed iCovidCare 

model aims to experimentally validate the instant decision-making model with varying body temperature values of the 

patients and makes instant decisions at the local edge device with minimum delay. The efficacy of the proposed model is

validated and compared with other existing rule-based classification models [35–37] , as depicted in Fig. 5 . From the analysis,

it is noted that the predicted success ratio of the instant decision-making model is linearly increased with respect to the

total number of patients. Further, the proposed model enhanced the predicted success ratio by 89%, as compared with 

existing rule-based classification models. 

4.4. Empirical results and analysis 

In this section, we discuss the empirical results and analysis of the iCovidCare model with various standard classification 

techniques. First, we discuss feature analysis of the synthetic dataset to show the most significant features, which need 

to be used for further experimental evaluation. Further, we compare the eRF classification technique with four standard 

classification techniques including Linear Regression (LR), Support Vector Clustering (SVC), Decision Tree (DT), and Gaussian 

Naive Bayes (GN) with various validation matrices such as accuracy, precision, recall, RMSE, MAE, and training time. 

4.4.1. Feature analysis 

The system accuracy of a model depends on the selection of the optimal number of features set. Thus, to provide an

analytical model, we have used a Correlation-based Feature Selection strategy to assess the important feature of the COVID- 

19 dataset, as shown in Fig. 6 . The main objective behind the feature selection is to predict features that are more crucial for
10 
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Fig. 6. Relative features of COVID-19 dataset using correlation matrix. 

Fig. 7. Accuracy of various classification models without features selection. 

 

 

 

 

 

 

COVID-19 disease prediction. The attribute analysis shows some interesting results such as a negative correlation between 

body temperature and patients age. Likewise, the relationship between other features can also be depicted in Fig. 6 . 

Before data fusion, the various number of features need to be selected to depict the best feature set for COVID-19 disease

prediction. In this experiment, a unique weight is assigned to each feature that splits the feature values into 8, 12, 16, and 20,

respectively. The accuracy of various classification models before fusion is calculated based on the set of selected features, 

as depicted in Fig. 7 . From the results, it is evident that all classification models with 20 features achieved a better accuracy

rate than the other feature sets. Moreover, the analysis result before data fusion indicates that the eRF technique performs 

better with 20 features set as compared with other classification models. 

The accuracy rate of various classification models over after fusion COVID-19 dataset with the most significant number 

of features is depicted in Fig. 8 . From this analysis, it is observed that the accuracy of each classification model is much im-

proved after applying data fusion, data fusion, and feature selection strategies. All classifiers for a set containing 20 features 

that improved the accuracy rate instead of other feature sets. However, the eRF classification model with 20 feature sets 

remain achieves better results than all other feature sets. 

Table 2 summarizes the estimated accuracy of all classification models according to the feature sets. The eRF technique 

achieves 67.1% accuracy, which is better than other classification models before applying the data fusion strategy. However, 

the result is different when considering only the most significant features from the COVID-19 dataset after the data fusion 

strategy. In this case, the accuracy rate of the eRF classifier achieves 75.9% accuracy, which is higher than other classification

models and before the data fusion technique. The achieved results show that the eRF classification model can able to predict

the COVID-19 disease by ingesting enough features. Furthermore, the experimental results also indicate that the data fusion 

and feature selection methods can significantly improve the COVID-19 disease predictions as well as the accuracy rates of 

all classification models in terms of the large dimensional dataset with more features. 
11 
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Fig. 8. Accuracy of various classification models with features selection. 

Table 2 

Accuracy results of various classification models before and after data fusion. 

No of features 

Before Fusion After Fusion 

LR SVC DT eRF GN LR SVC DT eRF GN 

8 Accuracy 0.4167 0.5026 0.5278 0.5628 0.5415 0.4902 0.5347 0.5358 0.6003 0.55406 

12 0.4501 0.5393 0.5646 0.5976 0.5493 0.5275 0.5709 0.6473 0.6741 0.5737 

16 0.5165 0.6092 0.5381 0.6409 0.5962 0.5914 0.6332 0.6814 0.6967 0.6623 

20 0.5606 0.6297 0.6563 0.6714 0.6371 0.6385 0.6881 0.7064 0.7593 0.6986 

Table 3 

Validation results of various classification models before and after data fusion. 

Validation 

Metrics 

Before Fusion After Fusion 

LR SVC DT eRF GN LR SVC DT eRF GN 

Training Accuracy 0.5629 0.5931 0.6252 0.7641 0.6056 0.6486 0.6225 0.8642 0.9513 0.7631 

Test Accuracy 0.5933 0.6381 0.6473 0.6986 0.6267 0.7102 0.6814 0.7928 0.9168 0.8025 

Precision 0.6267 0.6179 0.7019 0.7327 0.6539 0.6963 0.7015 0.8239 0.8821 0.8323 

Recall 0.5898 0.7073 0.7263 0.7705 0.6822 0.6687 0.7432 0.8512 0.8975 0.7516 

RMSE 0.4912 0.4536 0.5498 0.4132 0.4226 0.4372 0.3643 0.4758 0.3481 0.3529 

MAE 0.3425 0.3503 0.2978 0.2315 0.2931 0.2763 0.2307 0.2582 0.2096 0.2459 

 

 

 

 

 

 

4.4.2. Validation result analysis 

The validation results for the proposed iCovidCare model with eRF classification technique and the standard four classi- 

fication models based on the feature selection approach is shown in Table 3 , which presents the accuracy, precision, recall,

MAE, and RMSE of the classification models. We applied the eRF classification model and the standard classification models 

before and after the proposed data fusion and feature selection strategy. The accuracy achieved by the eRF classification 

model was compared with the standard classification models to evaluate the performance of the proposed iCovidcare model 

with a feature selection strategy. Before feature selection, the proposed eRF and the DT classification model obtained higher 

accuracy, however, other classification models obtained lower accuracy. Moreover, MAE and RMSE of both eRF and SVC 

classification models are very less as compared with other classification models. The obtained results suggested that the 

COVID-19 dataset without data fusion does not provide higher accuracy results for all classification models. Besides that, the 

dataset is trained using a randomly selected set of features, which decreases the accuracy of all prediction models as well

as increases the error rates. The validation results of the proposed eRF model and the standard classification models over 

various performance matrices without fusion strategy are shown in Fig. 9 . 

The accuracy of the standard classification models largely increased after applying the proposed data fusion and feature 

selection strategy. From Table 3 , it is observed that the accuracy of the proposed eRF model is increased, whereas the RMSE

and MAE values are decreased as compared to other classification models. After applying the proposed data fusion and fea- 

ture selection strategy, the accuracy result of the DT and eRF models are greatly increased, i.e. 86.4% and 95.1%, respectively.

However, the DT model fails to provide better accuracy as compared to the proposed eRF model, which is 8.9% less than

the eRF model. The validation results of the proposed eRF model and the standard classification models over various perfor- 

mance matrices are shown in Fig. 10 . From Fig. 10 , it is observed that the values of accuracy, precision, and recall parameters

show higher variations in eRF, whereas other classification models provide fewer variations for the same metrics after data 

fusion and feature selection strategy. Thus, during experimental analysis, we have observed that the proposed data fusion 
12 
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Fig. 9. Validation results of classifiers with no feature selection. 

Fig. 10. Validation results of classifiers with feature selection. 

Fig. 11. Training time of various classification models. 

 

 

 

 

 

and feature selection strategy helps to extract the most crucial information from the COVID-19 dataset, eliminate the noise 

by removing the irrelevant features, and reduce the dimensionality and complexity of the dataset. Besides that, we also 

observed that the proposed RF model and the standard classification models with feature selection strategy can accurately 

predict the COVID-19 disease with a limited number of features. 

4.4.3. Training time analysis 

During training time analysis, we report the training time of the proposed eRF model and the standard classification 

models with an increasing number of estimators for the most significant features from the dataset. Fig. 11 depicts the

training time of various classification models, which is estimated based on the selection of the most significant features from 

the COVID-19 dataset. During analysis, it is also observed that the training time increases with the increase in the number of

available features on the dataset. From Fig. 11 , it is observed that the training time for both LR and DT classification models

are higher, i.e. 0.39 and 0.31, respectively when the set of optimal number of features is maximum, i.e. 20. However, for the

same set of features, the training time of SVC, eRF, and GN classification models is less, i.e. 0.20, 0.27, and 0.22, respectively

as compared with LR and DT models. 
13 
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In summary, we can conclude that the proposed iCovidCare model with ensemble RF classification technique provides 

considerably better solutions in terms of accuracy, precision, recall, MAE, and RMSE parameters and predicts the COVID-19 

diseases more accurately with 20 features set. However, the proposed eRF model requires more computational effort for 

training the dataset as compared to the SVC and GN classification model due to inherent higher complexity. 

5. Conclusion 

In this paper, we presented an intelligent health monitoring and prediction model, namely the iCovidCare model, using 

data fusion, feature selection, and eRF classification model in edge networks to improve the accuracy of COVID-19 disease 

prediction. To the best of our knowledge, COVID-19 disease prediction using feature selection and ensemble RF classifica- 

tion model in edge networks is a novel solution. The major contributions of the proposed iCovidCare model are two folded.

Firstly, an instant decision has been taken by the local edge devices based on the temperature sensor data using a rule-

based approach. Secondly, in the cloud servers, a data fusion and feature selection strategy has been applied to combine the

extracted features from the MSD and the PMRs for generating valuable healthcare data. Besides that, several data prepos- 

sessing techniques have been applied to eliminate irrelevant and redundant data and select important ones without noise. 

Finally, eRF classification model is used to train the proposed iCovidCare model for the COVID-19 disease prediction. The 

proposed model is evaluated with a synthetic COVID-19 dataset and compared with the traditional classification models 

based on various performance metrics to show its effectiveness. The eRF classification model for iCovidCare has achieved 

95.13% accuracy, which is higher than the standard classification models. 

In the future, the performance of the data fusion strategy will be enhanced by applying different data mining techniques 

to generate a more refined dataset for COVID-19 disease prediction. Further, we will apply the ensemble deep learning 

model for COVID-19 disease prediction and prepare an ontology-aware recommendation system. 
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